华东师范大学期中试卷 A 卷 2024-2025 学年第二学期 参考答案及评分标准

课程名称	₹: _	软件.	工程数	学	-							
学生姓名	; _				学	:	号:					
专业	′: _	软件工程				年级/班级:				2024 级		
课程性质	i: 公	共必修、	公共造	选修、	<u>专业必</u>	<u>必修</u> 、	专业为	先修				
_	<u> </u>	三一四	五	六	+:	八	力.	+	总分	阅卷人签名		

<u> </u>	11]	四	五.	六	七	八	九	+	总分	阅卷人签名

- —, Logic (5 questions, 35 points)
 - 1. (6 points) Determine the truth value of each of these statements if the universe of discourse for all variables consists of all integers.
 - 1. $\forall x \exists y (x + y = 1)$
 - 2. $\exists x \exists y (x + 2y = 2 \land 2x + 2y = 5)$
 - 3. $\exists x \forall y (x < y^2)$

1. (1) T (2) F (3) T

2. (5 points) 证明下面的公式 (不用真值表方法)

$$\neg(p \leftrightarrow q) \equiv ((p \lor q) \land \neg(p \land q))$$

- 3. (9 points) 将下列命题符号化(要求使用全总个体域)
 - 1. 火车比轮船快
 - 2. 在北京工作的人未必都是北京人
 - 3. 部分序集 (A, ≤) 没有最大元

4. (7 points) 试证明下面的推理为有效推理

前提:
$$\forall x (F(x) \lor G(x))$$
 $\forall x (G(x) \to \neg R(x))$ $\forall x R(x)$

结论: $\forall x F(x)$

5. (8 points) 判断如下的结论是否正确

1.
$$\forall x (A(x) \land B(x)) \equiv \forall x A(x) \land \forall x B(x)$$

2.
$$\exists x (A(x) \land B(x)) \equiv \exists x A(x) \land \exists x B(x)$$

3.
$$\forall x (A(x) \lor B(x)) \equiv \forall x A(x) \lor \forall x B(x)$$

4.
$$\exists x (A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

- ___. Sets and Functions (3 questions, 20 points)
- 6. (6 points) Let A, B and C be sets. Prove that

$$(A-B)\cup C=A-(B-C)\quad \text{if and only if}\quad C\subseteq A$$

Solution.

 \implies : if $(A-B) \cup C = A - (B-C)$, then we have

$$C \subseteq (A - B) \cup C = A - (B - C) \subseteq A.$$

 \Leftarrow : if $C \subseteq A$, then we have

$$(A - B) \cup C = (A \cap \overline{B}) \cup C$$

$$= (A \cup C) \cap (\overline{B} \cup C)$$

$$= A \cap (\overline{B} \cup C) \qquad // \text{ because } C \subseteq A$$

$$= A \cap \overline{B \cap \overline{C}}$$

$$= A \cap \overline{B - C}$$

$$= A - (B - C).$$

- 7. (8 points) Determine whether these statements are true or false.
 - 1. $\emptyset \in \{\{\emptyset\}\}$.
 - 2. If A and B are both uncountable sets, then $A \cap B$ is also uncountable.
 - 3. The mapping f from \mathbb{R} to \mathbb{R} defined by $f(x) = \frac{1}{x^2}$ is a function which is neither onto nor one-to-one.
 - 4. The mapping f from \mathbb{R} to \mathbb{R} defined by f(x) = 2 2x is a function which is both onto and one-to-one.

Solution.

- 1. False.
- 2. False. If $A = \mathbb{R}^+$ and $B = \mathbb{R}^-$, then $A \cap B = \emptyset$.
- 3. False. f is not a function since it is undefined at x = 0.
- 4. True.
- 8. (6 points) Suppose A is an infinite set. Prove that A has a proper subset B (i.e., $B \subset A$)

such that |A| = |B|.

Solution. Since A is infinite, it has a infinite countable subset $A_0 \subseteq A$. Suppose $A_0 = \{a_1, a_2, a_3, \dots\}$. Then we let $B = A - \{a_1\}$. We can construct a bijection f from A to B as:

$$f(x) = \begin{cases} x & x \in A - A_0 \\ a_{i+1} & x = a_i \end{cases}.$$

Thus we have |A| = |B| and complete the proof.

三、Relations (4 questions, 45 points)

9. (10 points) 设 $R \subseteq A \times A$, 分别定义以下操作:

- r(R): 对 R 取自反闭包
- *s*(*R*): 对 *R* 取对称闭包
- t(R): 对 R 取传递闭包
- (1) 请考虑两个组合操作:

$$R_1 = t(s(r(R)))$$

$$R_2 = s(t(r(R)))$$

请证明或举反例说明:是否恒有 $R_1 = R_2$? 若成立请证明;若不成立,请给出一个集合 A 和关系 R 的具体例子,并分别写出 R_1 与 R_2 。

(2) 是否存在一个唯一的最小关系 $S(R \subseteq S)$,同时满足以下三个性质:自反性、对称性、传递性。如果存在,请说明该关系 S 的构造方法;如果不存在,请说明原因。

- (1) 不成立。举例 $A = \{1,2,3\}$, $R = \{(1,3),(2,3)\}$ 。 $R_1 = t(s(r(R))) = \{(1,1),(2,2),(3,3),(1,3),(2,3),(3,1),(3,2),(1,2),(2,1)\}$; $R_2 = s(t(r(R))) = \{(1,1),(2,2),(3,3),(1,3),(2,3),(3,1),(3,2)\}$, R_2 不包含 (1,2) 和 (2,1),两者不相等。
- (2) 是否存在一个唯一的最小关系 $S(S \subseteq R)$,同时满足以下三个性质: 自反性、对称性、传递性。如果存在,请说明该关系 S 的构造方法; 如果不存在,请说明原因。

Solution:

存在唯一的最小关系 S,即 R 的等价闭包。构造方法为: 先取 R 的自反闭包 r(R),再取对称闭包 s(r(R)),最后取传递闭包 t(s(r(R)))。

- 10. (10 points) Considering relations on the set $A = \{1, 2, 3, \dots, 100\}$ consisting of the first 100 positive integers, please answer the following questions:
 - (a) How many nonzero entries does the matrix representing the relation have if $R = \{(a,b) \mid a>b\}$;
 - (b) How many relations are there on set A that are asymmetric (非对称)
 - (c) How many relations are there on set A that are both symmetric and antisymmetric (对称且反对称)
 - (1)4950
 - $(2) \, 3^{\frac{100^2 100}{2}} = 3^{4950}$
 - (3) 2100 (仅包含自环,每个元素可选是否包含自环。)
- 11. (12 points) Given a function $f: X \to Y$, define the relation

$$R = \{(x_1, x_2) \mid f(x_1) = f(x_2), x_1, x_2 \in X\}$$

第7页,共11页

- (a) Prove that the relation R is an equivalence relation.
- (b) Give the corresponding set B of all equivalence classes.
- (c) Define the function $g: B \to f(X)$ by g([x]) = f(x). Prove that g is a bijective function.

证明 (a) Prove that the relation R is an equivalence relation.

To prove that R is an equivalence relation, we need to show that it satisfies the three properties of reflexivity, symmetry, and transitivity.

- (1) Reflexivity: For any $x \in X$, we have f(x) = f(x). Therefore, $(x, x) \in R$. This shows that R is reflexive.
- (2) Symmetry: If $(x, y) \in R$, then f(x) = f(y). This implies f(y) = f(x), so $(y, x) \in R$. This shows that R is symmetric.
- (3) Transitivity: If $(x, y) \in R$ and $(y, z) \in R$, then f(x) = f(y) and f(y) = f(z). This implies f(x) = f(z), so $(x, z) \in R$. This shows that R is transitive.

Since R satisfies all three properties, it is an equivalence relation.

(b) Give the corresponding set B of all equivalence classes.

The set of equivalence classes B is given by the partition of X induced by the relation B. Each equivalence class consists of all elements in X that are related to each other under B. Formally, the set of equivalence classes B is:

$$B = \{ [x] \mid x \in X \}$$

where [x] denotes the equivalence class of x, defined as:

$$[x] = \{y \in X \mid (x,y) \in R\} = \{y \in X \mid f(x) = f(y)\}$$

(c) Prove that $g: B \to f(X)$ is a bijective function.

Define the function $g: B \to f(X)$ by:

$$g([x]) = f(x)$$

We need to show that g is both injective (one-to-one) and surjective (onto).

- (1). Injectivity: Suppose g([x]) = g([y]). This means f(x) = f(y). By the definition of the equivalence classes, x and y are in the same equivalence class, i.e., [x] = [y]. Therefore, g is injective.
- (2). Surjectivity: For any $y \in f(X)$, there exists some $x \in X$ such that f(x) = y. Then, g([x]) = f(x) = y. This shows that every element in f(X) is the image of some equivalence class in B. Therefore, g is surjective.

Since q is both injective and surjective, it is a bijective function.

- 12. (13 分) 设 Π_n 表示集合 $S_n = \{1, 2, ..., n\}$ 的所有划分构成的集合。给定集合 S_n 上的两个划分 $P_1 = \{A_1, A_2, ..., A_r\}$ 和 $P_2 = \{B_1, B_2, ..., B_s\}$,若对于每个 A_j 均有某个 B_k ,使 $A_j \subseteq B_k$,则称 P_1 是 P_2 的加细,记为 $P_1 \preceq P_2$.
 - (a) 证明: 集合 (Π_n, \preceq) 是一个偏序集。
 - (b) 对于 n=3, 画出偏序集 (Π_n, \preceq) 的哈斯图。
 - (c) 对于 n = 5,求 $\{P_1, P_2\}$ 的最大下界和最小上界,其中 $P_1 = \{\{1, 2\}, \{3\}, \{4, 5\}\}, P_2 = \{\{1\}, \{2, 3\}, \{4\}, \{5\}\}.$
 - (a) To show that (Π_n, \preceq) is a poset, we need to verify three properties:
 - 1. **Reflexivity**: For any partition $P \in \Pi_n$, clearly every block of P is a subset of itself, so $P \leq P$.
 - 2. Antisymmetry: Let $X \in P_1$. Since $P_1 \leq P_2$, there exists $Y \in P_2$ such that

 $X \subseteq Y$. Since $P_2 \preceq P_1$, there exists $Z \in P_1$ such that $Y \subseteq Z$. But $X \subseteq Y \subseteq Z$ and $X, Z \in P_1$. Since the sets in a partition are non-overlapping, X = Y = Z. Similarly, for any set in P_2 , it is equal to a set in P_1 . Thus, $P_1 = P_2$, and the relation is antisymmetric.

3. **Transitivity**: If $P_1 \leq P_2$ and $P_2 \leq P_3$, then any block of P_1 is contained in some block of P_2 , which in turn is contained in some block of P_3 . Thus $P_1 \leq P_3$.

Therefore, (Π_n, \preceq) is a poset.

(b) Hasse diagram for Π_3 :

For n=3, the set $S_3=\{1,2,3\}$ has 5 partitions:

- $P_0 = \{\{1\}, \{2\}, \{3\}\}$ (finest partition)
- $P_1 = \{\{1\}, \{2,3\}\}$
- $P_2 = \{\{1, 2\}, \{3\}\}$
- $P_3 = \{\{1,3\},\{2\}\}$
- $P_4 = \{\{1, 2, 3\}\}$ (coarsest partition)

The Hasse diagram is:

(c) Given:

$$A_1 = \{\{1, 2\}, \{3\}, \{4, 5\}\}\$$

$$A_2 = \{\{1\}, \{2,3\}, \{4\}, \{5\}\}$$

- Greatest Lower Bound: The meet is the finest partition that is coarser than both A_1 and A_2 . We find it by taking pairwise intersections:
 - The element 1 is merged with 2 in A_1 , but forms a separate block in A_2 . Therefore, 1 must form a separate block on its own.
 - The element 2 is merged with 1 in A_1 and with 3 in A_2 . Therefore, 2 must form a separate block on its own.
 - Through similar analysis, it can be concluded that all elements form separate blocks.

$$GLB = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}$$

- Least Upper Bound (LUB): The join is the coarsest partition that refines both A_1 and A_2 . We find it by taking connected components of the union:
 - The block $\{1,2\}$ of A_1 and the block $\{2,3\}$ of A_2 intersect due to the element 2, and they are merged into $\{1,2,3\}$.
 - The block $\{4,5\}$ of A_1 is split into $\{4\}$ and $5\}$ in A_2 . However, since the LUB needs to be coarser than A_1 , the block $\{4,5\}$ is retained.

$$LUB = \{\{1, 2, 3\}, \{4, 5\}\}$$